热敏电阻是一种半导体,电阻值高于导电材料电阻值,但低于绝缘材料电阻值。热敏电阻的电阻值与温度之间的关系主要取决于其材料成分。制造商通常会以高精度确定这一属性,因为这对热敏电阻购买者而言是有意义的主要特征。
RTD的电阻几乎以线性方式发生变化,与之相反,热敏电阻,NTC热敏电阻的电阻呈明显的非线性变化,实际上其电阻会随着温度的上升而降低。热敏电阻一直是常用的温度测量工具,主要原因如下:
电阻随每度温度改变呈大幅变化,可提供更高的分辨率
可重复性和稳定性高
的可互换性
外形小巧,可快速响应温度变化
负温度系数热敏电阻,也被称为NTC热敏电阻,是一类电阻值随温度增大而减小的传感器电阻。它以其特别的温度特性在多个领域中发挥着重要作用。
首先,负温度系数热敏电阻在温度测量和控制方面具有***优势。它可以用作温度传感器,用于测量各种设备和系统的温度,并通过反馈控制实现温度的稳定。这使得它在诸如汽车工业、电子设备保护等领域中得到了广泛应用。例如,在汽车工业中,它可以用于冷却系统的温度监测和控制、发动机温度测量等。
其次,负温度系数热敏电阻还可以用于补偿其他电子元件的温度漂移。在一些对精度要求非常高的仪器仪表中,pt100热敏电阻,由于温度变化可能会产生误差,利用负温度系数热敏电阻可以抵消这种误差,提高精度。
此外,负温度系数热敏电阻还具备温度响应速度快、成本低廉等优点。这些特点使得它在温度补偿、温度测量和控制等领域中成为理想的选择。
总的来说,负温度系数热敏电阻在多个领域中都有广泛的应用,其特别的温度特性使其成为实现准确温度控制和测量的关键元件。随着技术的不断发展,热敏电阻器,负温度系数热敏电阻的应用领域还将继续拓展,其在电子设备和系统中的重要性也将不断提升。
电子PTC热敏电阻器
正温度系数热敏电阻以钛酸钡(BaTiO3)为基本材料,再掺入适量的稀土元素,利用陶瓷工艺高温烧结而成。纯钛酸钡是一种绝缘材料,但掺人适量的稀土元素如(La)和铌(Nb)等以后,变成了半导体材料,被称半导体化钛酸钡。它是一种多晶体材料,晶粒之间存在着晶粒界面,对于导电电子而言,晶粒间界面相当于一个位垒。
一种材料具有PTC效应仅指此材料的电阻会随温度的升高而增加,如大多数金属材料都具有PTC效应。在这些材料中,PTC效应表现为电阻随温度增加而线性增加,这就是通常所说的线性PTC效应。经过相变的材料会呈现出电阻沿狭窄温度范围内急剧增加几个至十几个数量级的现象,即非线性PTC效应。多种类型的导电聚合体会呈现出这种效应,如高分子PTC热敏电阻。
这些导电聚合体对于制造过电流保护装置来说非常有用。
PTC热敏电阻在-40~250℃区域内保持阻一温的线性变化,从而简化电路。目前,普遍的PTC正温度热敏电阻的阻温特性的突变性的,线性区域很窄,通常用于电路的过流保护,不能用于温度检测、温度补偿电路。